

Control and Monitoring in an IP infrastructure

Peter Schut CTO

SMPTE Australia July 2019

Control and Monitoring in an IP infrastructure

This presentation is not about why we should go to IP

It is about how we get there with respect to control and monitoring

Why do we need a Control System in an IP infrastructure?

- Today (yesterday) a video infrastructure was based on a central SDI router.
- With this router you would get a control system that controlled the cross-points and made physical connection between sources and destinations. (circuit switching)
- The next generation (as of today) is based on one or more IT switches and is becoming way more complex to control!
- In IP networks there is no router control SW anymore that comes with the router/switch manufacturer.....
- Instead you suddenly need to control hundreds to thousands of devices to mimic what you did yesterday with an SDI router

Why do we need a Control System in an IP infrastructure? (cont.)

- The SDI router was by nature a non-blocking device
- The IP switch in a distributed system can potentially become blocking and "tie-line" or better "pipe-line" management needs to be in place.
- The SDI router in critical installations had a redundant crosspoint where single points of failure were restricted to small groups of channels
- To achieve a similar redundancy in an IP system doubling the switch layer is needed (the red and blue layer), increasing the need for a control system to ensure signal routing is correct

Why do we need a Control System in an IP infrastructure? (cont.)

- The SDI router had a fixed relation from source to connection (you plug a source into a physical numbered spigot and the connection is logical)
- In an IP system the sources are not related to a unique input, they are kind of virtual and can exist on virtual any physical port
- This means you need a complete new approach to detect the source (and destination) and perform the enumeration into an operational understandable format
- Especially when sources and destinations are dynamically changed

Early implementations of IP "control systems"

- The first systems that enabled routing in an IP environment were:
 - Vendor specific
 - Not easy to integrate third party devices
- Second generation systems
 - Using multiple proprietary protocols to control a `route'
 - Differing methods of control (SDP Session Description Protocols, discreet IP address / port / origin objects, native methods/formats or static addresses/ports)
 - Time consuming to configure (long lists of IP-addresses and ports)
 - Not very intuitive
- Hardly any fun and actually defeat the promise of a nice new future

Current (less ideal) implementations of IP "control systems"

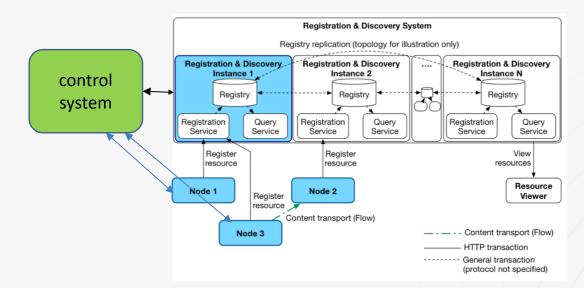
- Some examples today still show lack of efficiency in setting up and or maintaining the system
- Sometimes layered approaches are in place to get the desired result (this is less ideal and makes error finding more difficult)
- The responsibilities of who controls what is not always clear

Troubleshooting and monitoring

- Today troubleshooting is just following the signal on the single cable.
- Unplug the device and troubleshoot
- In IP this is a completely new challenge
- First you can not unplug a cable as this will not plug into a measurement device and it will affect more than just one signal
- The monitoring therefore needs to be an integral part of the design

Improvements to the above challenges

- AIMS and AMWA helped solving some of these issues
- The use of standardized protocols called NMOS are now in place
- IS-04 is used to auto discover the sources and destinations in a standardized manner
- IS-05 is used to setup connections in the IP infrastructure in a standardized manner
- IS-06 is there to protect the routes that are in place by managing the bandwidth that is needed


AMWA NMOS IS-04/05 – IP Routing

AMWA Networked Media Open Specifications (NMOS) IS-04/05

- Auto discovery of device/nodes either directly or via another registry and discovery system
- Ability to route/subscribe a destination or receiver to a 'flow' (stream).
- IS-04/05 is being adopted by many manufacturers as a common standard and is recommended by AIMS.
- The standard is still evolving some original features have been deprecated.
- No bandwidth management /switch control is included in the standard. This is part of IS-06

AMWA NMOS IS-04/05 – IP node Registration and Discovery and connection management

More information can be found at:

github.com/AMWA-TV/nmos

Network Control System

NMOS IS-06 Network Control

- Currently a working group
- Detection of network switch/routing devices

Arista AMCS extensions

- Control flow management
- Routing of flow from one device to another including specification of bandwidth
- Independent of IGMP uses static routing

Network Control System

Software Defined Network (SDN)

- There are different definitions of what an SDN means
- Switch vendors like Arista, Cisco, Juniper, Mellanox are not standing still..
 - They have a good awareness of the problems that media flows have caused
 - Control of media flows and bandwidth are being addressed and standardised over time using different protocols. These protocols are still evolving
- A Broadcast control system with agnostic network management layer APIs can give best of breed choices

Network Control System

Additional functionality useful in an IP Broadcast Control System

- Management of IP address/ports auto configuration where possible especially in dynamic system infrastructure
- Authorisation of devices / Security / Enabling of ports/traffic, rules
- Redundancy of critical transmission routes / paths
- Re-routing of paths if device/network is lost, re-located, re-cabled
- Monitoring of vital status / statistics in understandable and accessible way for operational / engineering staff
- Link to the device using its native device protocol in order to control device parameters like proc amp, shuffling, gain, delay... etc

So why do we need a Control System in an IP infrastructure?

All the previous arguments are responsible for the fact that in an IP centric infrastructure you need a clever, easy to operate and flexible control system.....

A system that uses the NMOS protocols and a system that talks to all instances of the infrastructure by native (vendor specific) protocols.

14.90