

Fundamentals of IP in Broadcast Production

Wes Simpson

Telecom Product Consulting

wes.simpson@gmail.com +1 203 376 3372

https://www.telecompro.tv

Ed Calverley Q3 Media Training ed.calverley@q3media.co.uk +44 20 3475 0250 https://q3mediatraining.co.uk

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019

Agenda (90-minute Session)

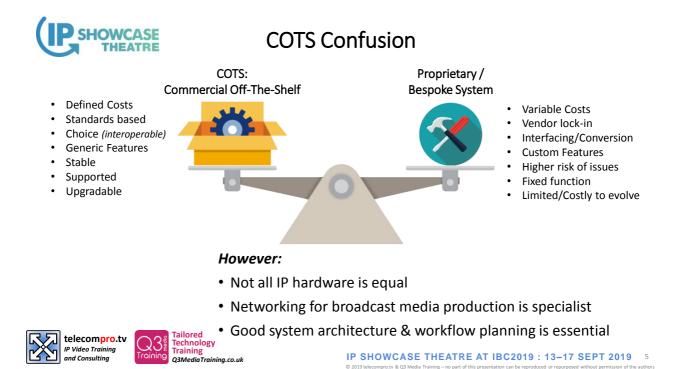
- Ed IP / Networking Basics
- Wes Media Transport Over IP (ST 2110-10/20/30/40 Deep Dive)
- Ed PTP: Timing & Synchronisation
- Wes ST 2110-21 Traffic Shaping
- Wes New parts of ST 2110 (ST 2110-22/23)
- Wes ST 2022-7 Redundant Transport
- Ed JT-NM TR-1001 / NMOS

IP / Networking Basics

IP SHOWCASE THEATRE AT IBC2019: 13–17 SEPT 2019 3 © 2019 telecomprov. V& 0.3 Media Training – no part of this presentation can be reporduced or repurposed without permission of the authors

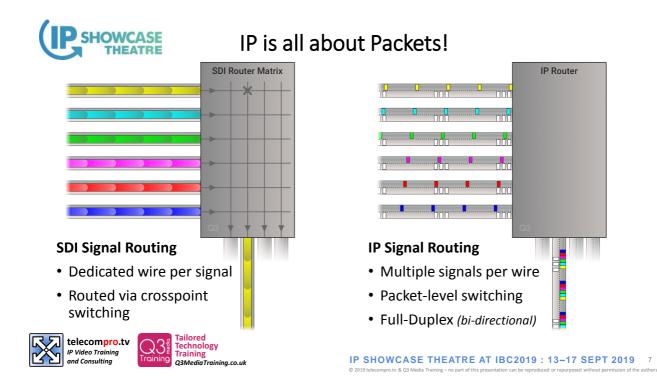
ANYBODY EVER TELL YOU

YOU SOUND LIKE A BROKEN RECORD?



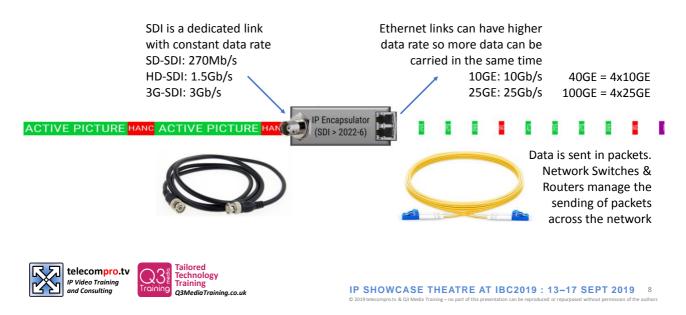
Why IP?

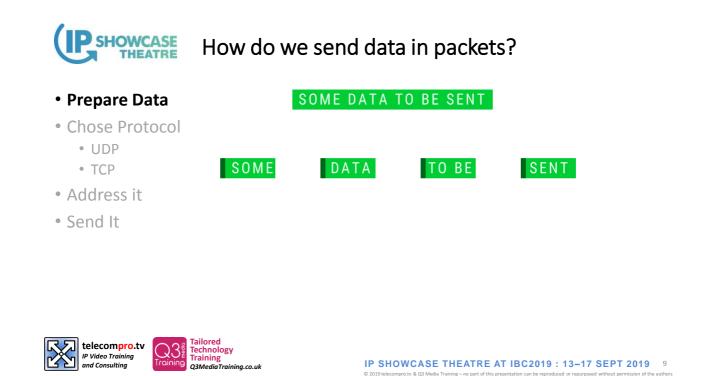
- We must start by recapping the obvious!
- 2 main drivers for switching to IP Infrastructure:
 - Flexibility
 - Reconfigurable & infrastructure not limited by resolution/formats
 - Operational functions easier to relocate and evolve over time
 - More efficient architectures (don't simply think about replacing SDI)
 - Software on generic IT servers rather than vendor-badged systems
 - may have to accept some compromises to change workflow
 - Costs > Use of more COTS hardware/software
 - minimise custom development and branched code makes systems easier to support
 - Up-front cost may not be lower (overall lifecycle costs may be lower)
 - Move to software-as-a-service (SaaS) pay only for what you use when you need it!

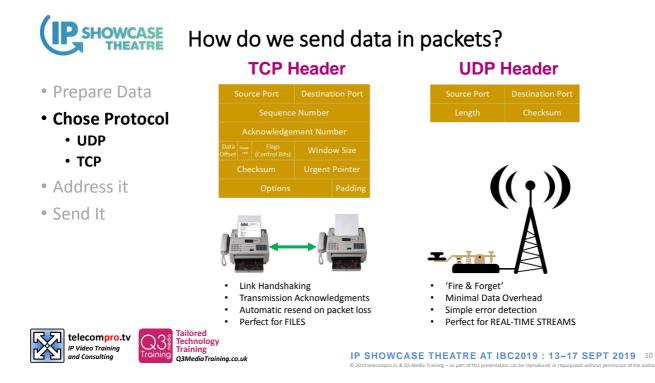


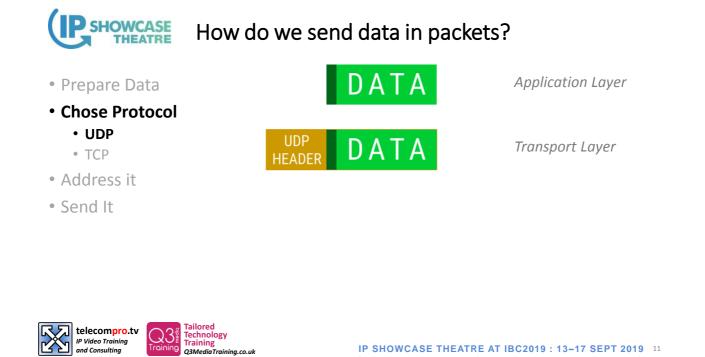
The Rise of Software

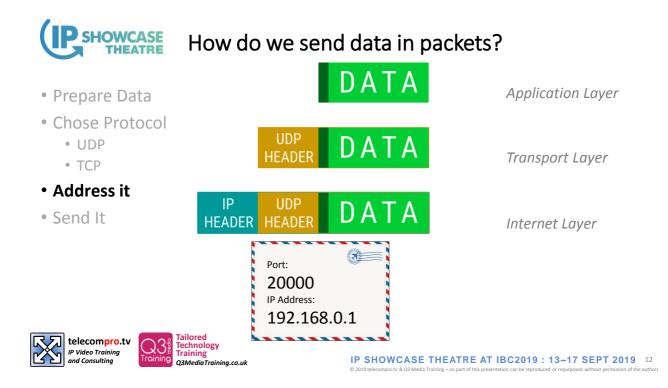
- Dedicated Hardware still strong in production or wherever real-time processing with low-latencies are important
- Media processing with Software is growing in capability
- Software enables new architectures that don't have equivalents in SDI
- Motivation for vendors is changing to create products which can be sold in scale
- IP Media Standards need to work for both software & hardware

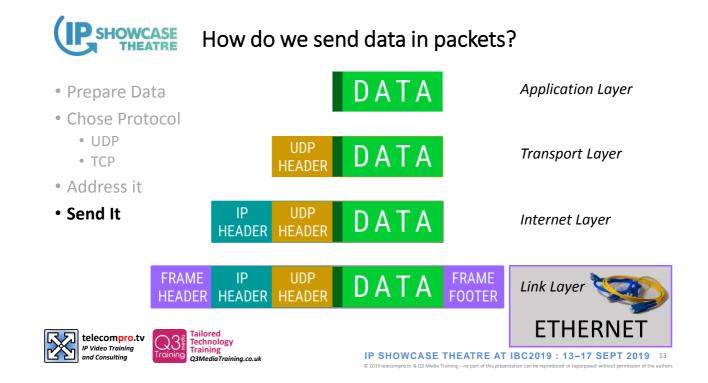


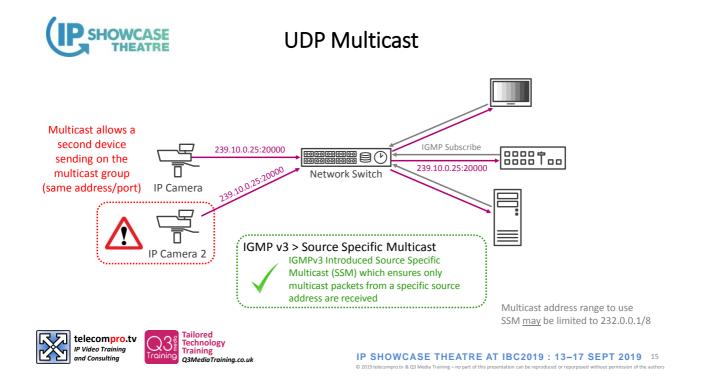







IP is all about Packets!

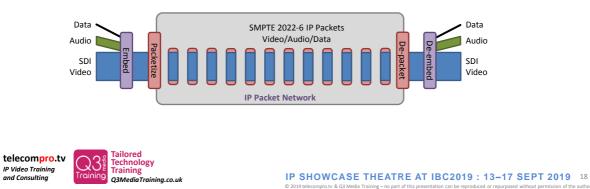




CE SHOWCASE Sending SD	Sending SDI Over an IP Network						
		Name	Standard	Length			
	Applicatio	n Layer					
DATA	SDI	Serial Digital Interface	SMPTE 259M, 292M, 424M	1376 Bytes			
	HBRMT	High Bitrate Media Transport	SMPTE 2022-6	8-16 Bytes			
Not to scale!	RTP	Reat-Time Transport Protocol	RFC 3550	12 Bytes			
	Transport	Layer					
VDP UDP DATA	UDP	User Datagram Protocol	RFC 768	8 Bytes			
	Internet Lo	ayer					
HEADER HEADER DATA	IP	Internet Protocol (v4/v6)	RFC 791 / RFC 2460	20 / 40 Bytes			
	Link Layer						
FRAME IP UDP DATA FRAME HEADER HEADER DATA FOOTER	MAC	Media Access Control (e.g. Ethernet)	IEEE 802.3	42 Bytes			
telecompro.tv IP Video Training and Consulting Tailored Technology Training Q3MediaTraining.co.uk	IF © 2	P SHOWCASE THEATRE AT 019 telecompro.tv & Q3 Media Training – no part of this pres					

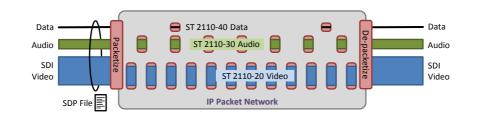
What are we sending?

Media Transport Over IP (2110-10/20/30/40 Deep Dive)



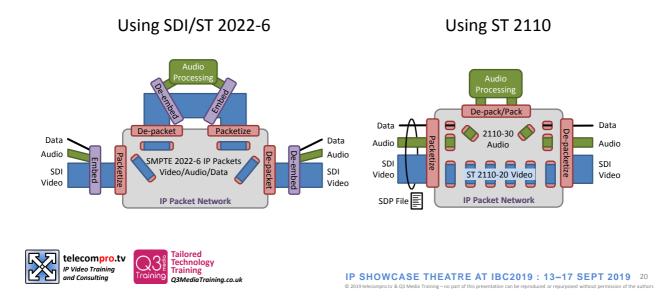
IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 17

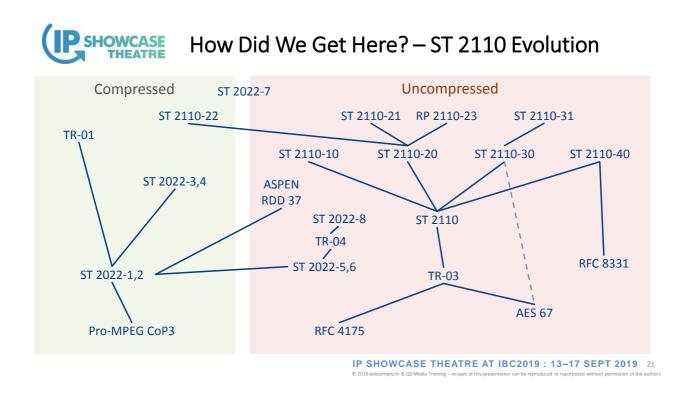
Media Transport over IP SMPTE ST 2022-6 ('SDI over IP')


- Take entire SDI signal and encapsulate it in IP stream – Includes audio and embedded data signals
- Easy to maintain audio/video synchronization
 - Hard to process just one part of a stream

Media Transport over IP SMPTE ST 2110

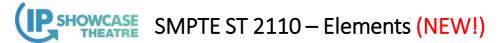
- Each media type in a separate packet stream
 - Easy to process individual components
 - Signals need to be resynchronized after processing
- PTP (Precision Time Protocol) used for packet timestamping





IP	SHOWC	ASE	THEATRE	AT IE	C2019	: 13–17	SEPT	2019	19
© 20	19 telecompro tv & (03 Media 1	Fraining – no part of this	nresentatio	on can be reprodu	uced or renurnose	l without ner	mission of the	authors

ST 2022-6 / ST 2110 Audio Processing Packet Flow



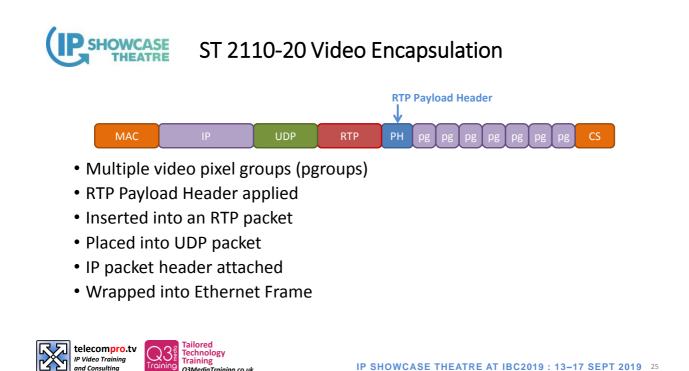
- ST 2110-10 System and Timing
- ST 2110-20 Uncompressed Video
- ST 2110-21 Video Stream Packet Shaping
- ST 2110-30 Uncompressed Audio
- ST 2110-31 AES3 Audio Streams
- ST 2110-40 Ancillary Data

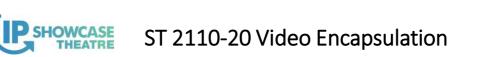
IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 22

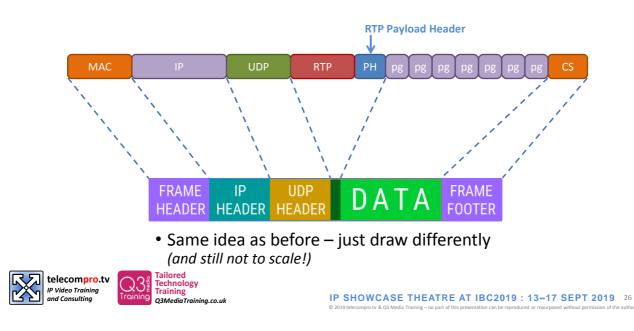
- OV 2110-0 Roadmap for the 2110 Document Suite
- ST 2110-10 System and Timing
- ST 2110-20 Uncompressed Video
- ST 2110-21 Video Stream Packet Shaping
- ST 2110-22 Constant Bit-Rate Compressed Video
- RP 2110-23 Single Video Essence Transport over Multiple ST 2110-20 Streams
- ST 2110-30 Uncompressed Audio
- ST 2110-31 AES3 Audio Streams
- ST 2110-40 Ancillary Data

IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 23

ST 2110-10 System Timing and Definitions


- Maximum UDP datagram size: 1460 octets, including UDP header


 Extended UDP datagram allowed with up to 8960 octets
- SMPTE ST 2059-2 PTP Profile of IEEE 1588-2008
 - If interchanging audio with AES67, then compatible parameters must be used
- RTP timestamps are tied to the media
 - For video, RTP timestamps of all packets for video frame are the same
 - For real-time sources, this should represent the Image Capture Time
 - For SDI converters, RTP timestamp is moment when video frame alignment point arrives at device input (SMPTE ST2059-1 defines alignment points)
- All media clocks must have an offset of zero
 - This makes it easier to recover from loss of signal or unexpected system restart



and Consulting

O3MediaTrain

- Pixels formed into pgroups
 - pgroup size depends on sampling format
 - Must be integer number of octets
 - Pixels that share samples must be in the same pgroup
- Example: 4:2:2 10-bit
 - 2 pixels in 5 octets

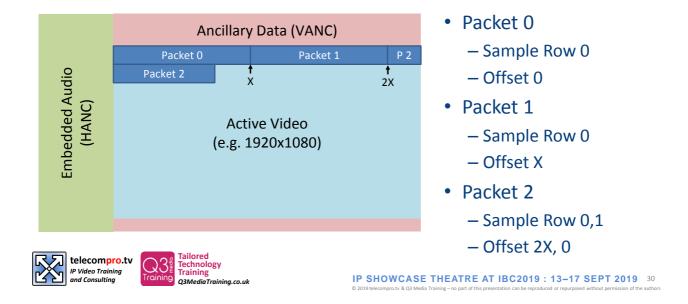
Pixel Group Sizes

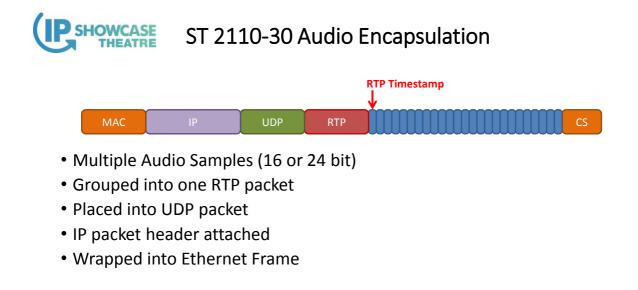
• Every supported video format listed in ST 2110-20 tables – Tables also include order of samples within each pgroup

sampling	depth	pgroup size (octets)	pgroup coverage (pixels)	Sample Order
	8	4	2	C' _B ,Y0',C' _R ,Y1'
YCbCr- 4:2:2	10	5	2	C' _B ,Y0',C' _R ,Y1'
CLYCbCr-	12	6	2	C' _B ,Y0',C' _R ,Y1'
4:2:2	16, 16f	8	2	C' _B ,Y0',C' _R ,Y1'
	8	4	2	C' _T ,I0',C' _P ,I1'
ICtCp- 4:2:2	10	5	2	С'т,10',С'р,11'
	12	6	2	C'T,I0',C'P,I1'
	16, 16f	8	2	C' _T ,I0',C' _P ,I1'

PSHOWCASE ST 2110-20 Video Packet Header

	\longrightarrow	Bits	16						
	РТ	м	СС	х	Ρ	V			
R	ber (low bits)	RTP Sequence Number (low bits)							
RTP Header	Time Stamp								
er	Synchronization Source (SSRC) Identifier								
막	RTP Sequence Number (high bits)								
RTP Payload	Sample Row Data Length (bytes)								
yloa	Sample Row Data Number (0n)								
Header									




- 32-bit Sequence Number (16 bit Sequence number would wrap in less than half a second for Gigabit-class payloads)
- Length of Sample Row Data = Number of octets from scan line in this datagram. Must be multiple of pgroup
- F = 0 for progressive scan and first field in interlace video
- F = 1 for second field in interlace video
- Video Line Number = Video scan line number, starts at 0 for first active line of video (note difference from SDI line numbering)
- C = 1 if more than one line is in datagram, set to 0 for last line in each datagram
- Sample Row Data Offset = Location of first pixel of payload data within scan line = 0 if first pixel in scan line; counts by pixels

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 29

ST 2110-20 Sample Row Data

ST 2110-30 Audio

- Based on AES67
 - 48 kHz, 24-bit linear encoding must be supported in all devices
- Zero Offset Media Clock
 - Forces all media clocks to be tied to common time base
- Audio Channel Grouping
 - How audio channels relate to each other in a stream
- Receiver Classifications
 - Three levels of receiver performance
- Packet size limit 1440 = 1460 (12 (RTP) + 8 (UDP))
- No need for SIP or other connection management

Importance of "ptime"

- Audio streams are divided into fixed duration packets

 Common size is 1 msec, signaled using "a=ptime:1" attribute
- Number of samples from a channel depends on sampling rate
 - For example, 48 kHz has 48 samples in 1 msec
 - Each sample could be 2 bytes (16 bit audio) or 3 bytes (24 bit audio)
 - Thus, 1 msec of 48 kHz, 24-bit audio is 48 * 3 = 144 bytes
- Number of channels in a packet limited by payload size
 - Total RTP audio payload is 1440 bytes
 - Jumbo frames not allowed for audio


```
IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 33
```

UPSHOWCASE ST 2110-30 Receiver Classifications

Required Sampling Rates and Packet Times	А	АХ	В	ВХ	С	СХ
48 KHz, 1 msec	8	8	8	8	8	8
48 KHz, 125 μsec			8	8	64	64
96 KHz, 1 msec		4		4		4
96 KHz, 125 μsec				8		32

ST 2110-30 Audio Channel Grouping Symbols

Channel Grouping Symbol	Quantity of Audio Channels in group	Description of group	Order of Audio Channels in group
М	1	Mono	Mono
DM	2	Dual Mono	M1, M2
ST	2	Standard Stereo	Left, Right
LtRt	2	Matrix Stereo	Left Total, Right Total
51	6	5.1 Surround	L, R, C, LFE, Ls, Rs
71	8	7.1 Surround	L, R, C, LFE, Lss, Rss, Lrs, Rrs
222	24	22.2 Surround	Per SMPTE ST 2036-2, Table 1
U01U64	Unn where nn is the number of channels in group	Undefined	Undefined

IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 35

ST 2110-31 AES3 Audio Streams

- AES3 streams can be used for non-PCM audio applications
 - Dolby E Compressed Audio is one common application
 - Other signals defined in SMPTE ST 337/338 (e.g. AC-3 compressed audio)
 - Has also been used for non-linear audio, one-bit audio and SACD
 - Also know as AES/EBU Audio
- For these applications, transparent carriage across IP is a must
 - Cannot change any bits within the stream
 - Data cannot be interpreted as uncompressed linear audio signals
- ST 2110-31 should NOT be used for linear 16-bit or 24-bit audio – Those should be carried using ST 2110-30 packet streams

ST 2110-31 Packet Format

- Based on AM824 data format
 - 32 bit sub-frames, each with 8 bits of signaling and 24 bits of data
 - Can hold all data plus signaling bits from AES-3 (B, F, P, C, U, V)

V	Р	Х		СС	М	РТ	RTP Sequence Number	RTP			
	Time Stamp (32 bits)										
	Synchronization Source (SSRC) Identifier										
В	8, F, P	P,C,I	U,V d	lata bits		AM824 su	b-frame 0				
В	B,F,P,C,U,V data bits						AM824 sub-frame 1				
В	B,F,P,C,U,V data bits						AM824 sub-frame 2				
ecompro ideo Trainin Consulting		C	23ª	Tailored Technolog Training Q3MediaTra		o.uk	IP SHOWCASE THEATRE AT IBC2019 : 13–17 SE © 2019 telecompro.tv & 0.3 Media Training – no part of this presentation can be reproduced or repurposed with				

RTP Header

Seq. #, SSRC

telecompro.tv

IP Video Training and Consulting

ST 2110-40 Ancillary Data

DID

DID

Ł

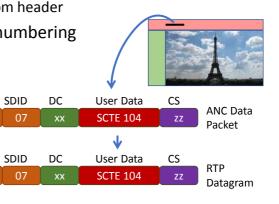
- Extract ancillary data packets from VANC or HANC
 - Captions, time code, ad triggers, etc.
 - · Place them into RTP packets with custom header
- Line numbers are based on SDI line numbering

Ancillary Flag

000 3FF 3FF

Anc. Packet Header

Line #, Offset


Don't match 2110-20 line numbers

Payload Hdr.

Tailored

Technology Training

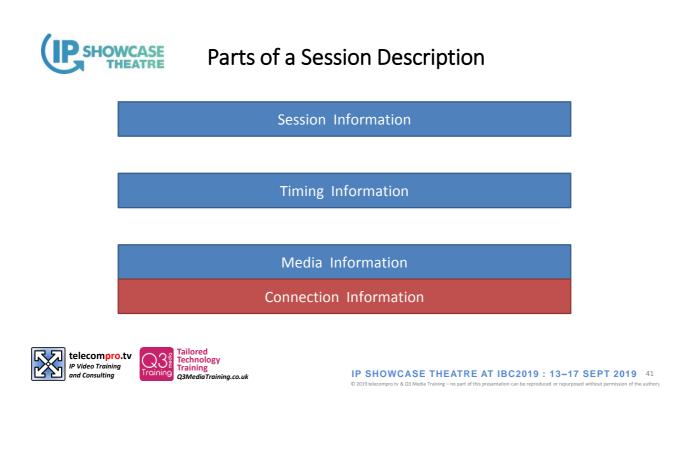
Q3MediaTrainina.co.uk

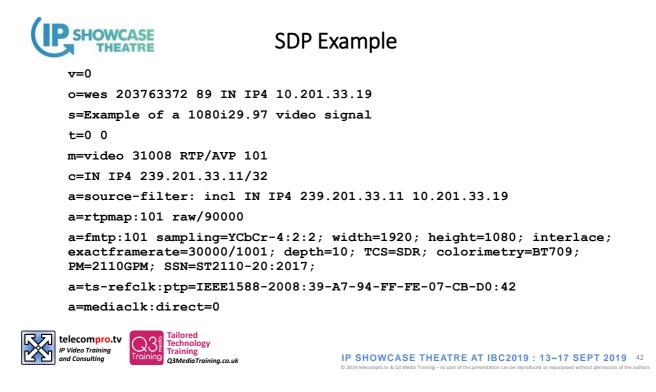
IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 38

ST 2110-40 ANC Packet Format

С	Line Number (11 bits)		Horizontal Offse	S Stream Num (7)	
	DID (10 bits)	SDID	(10 bits)	Data Cou	unt (10 bits)
ANC Packet Payload					
	ANC Packet Payloa	d	Checksum	(10 bits)	Padding to 32 bits

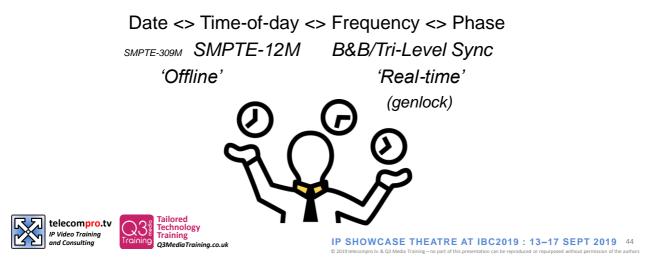
- Each ANC packet in the RTP payload has its own header
- Color channel flag: C=1 ANC packet is from HD color difference channel. C=0 in all other cases
- Line Number and Horizontal Offset refer to SDI raster values
- S=1 Multiple streams comprise the format of the original video signal containing the ANC packets
- Stream number indicates where the ANC packets were located within a multi-stream signal
- DID, SDID, Data Count, Packet Payload and Checksum are exact 10-bit values from ANC packet
- For each ANC packet within the RTP payload, padding makes the total number of bits a multiple of 32




```
IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 39
© 2019 telecomorpt & 03 Media Training – no part of this presentation can be reproduced or repurposed without permission of the authors
```


- Standardized format for describing video and audio content – RFC 4566
- Provides key data needed to process content
 - Structural metadata for each type of media stream
 - Connection information for each stream
 - Clock and timing information
 - Stream associations for closely coupled streams (ST 2022-7 hitless and RP 2110-23 subdivided streams)
- Text file
 - Can be accessed through NMOS APIs, other means

PTP Timing & Synchronisation



IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 43

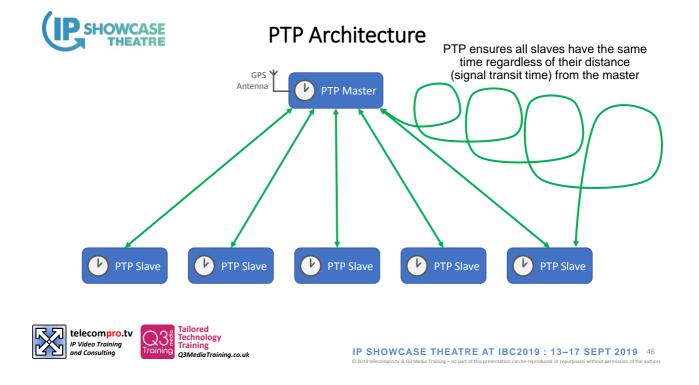
Time / Synchronisation

• Synchronous signals are essential for production to allow cleanswitching/mixing and capture to a common timebase

Time / Synchronisation

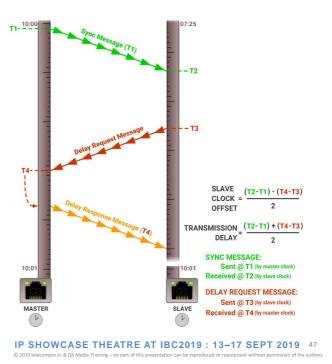
• PTPv2 (IEEE 1588-2008)

- Defines mechanism for accurately setting a local clock via exchange of a few simple messages
- PTP timestamps are 80-bits in size: 48 bits Seconds : 32 bits nanoseconds
- Can handle all our needs from Date/Time Timecode through to Frequency (Genlock)
- PTP Profiles defined by AES67 / SMPTE 2059-2


(see AES-R-16-2016 for compatibility recommendations)

• Epoc 1970-01-01 00:00:00

NTP – accuracy ~200 micro seconds PTP – accuracy ~1 micro second



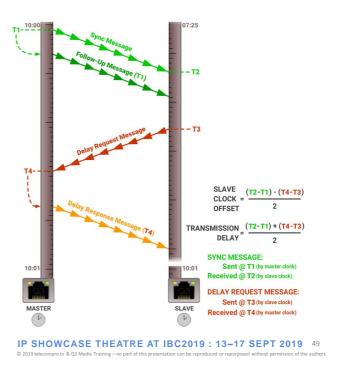
• Sync Message:

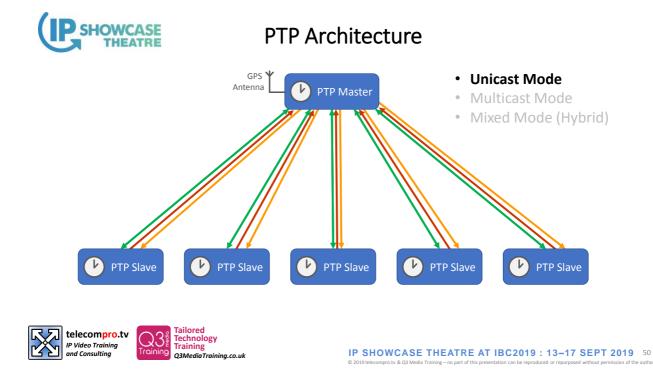
- "The time now is XX:XX" (sec:nanosec.)
- If slave immediately updated clock to be the time in the sync message (T1), it would still be offset equal to the time taken for the message to transit the link
- Delay Request & Response:
 - Measures time taken to transit network link
 - Assumes symmetrical delay

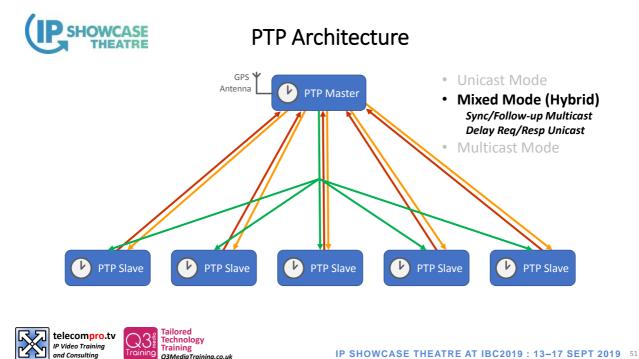
PTP Implementation Options

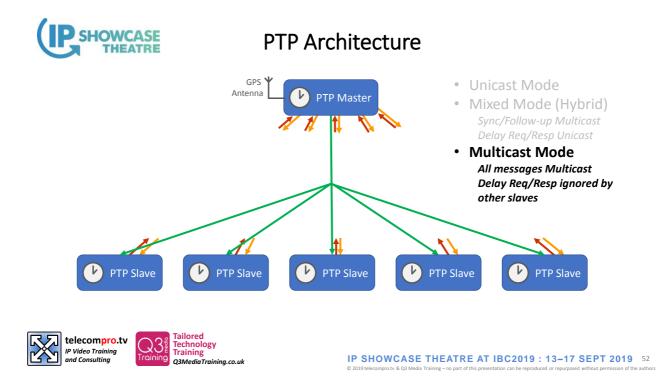
Time-Stamping Mechanism

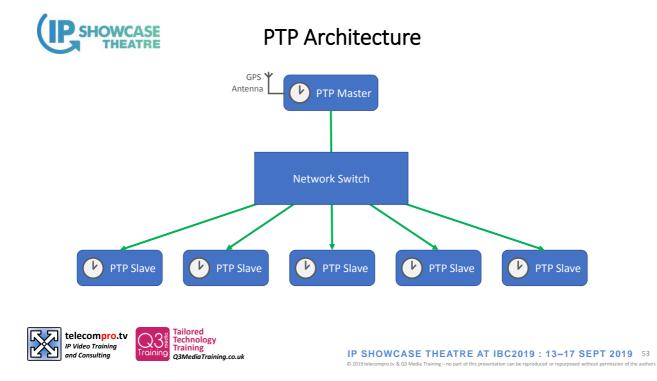
- 1-Step
 - Accurate timestamp written into packet at the point of egress
 - Requires precision hardware implementation
- 2-step
 - Message formed and passed to hardware for egress
 - Actual time of egress reported and inserted in a follow-up message
- Messages affected:
 - Sync Message
 - Peer Delay Response Message (will cover later!)

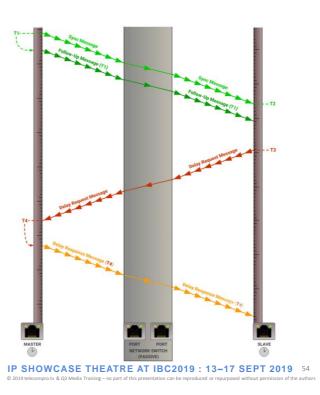


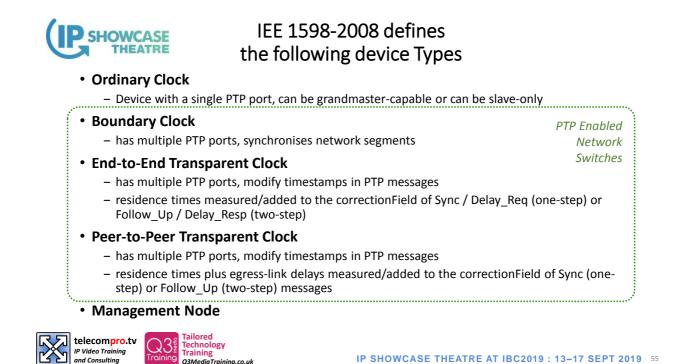


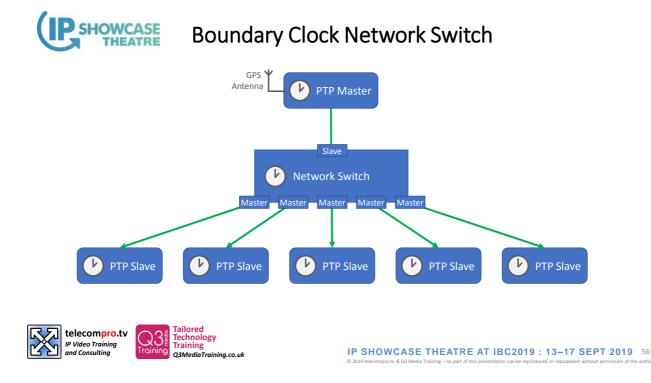

• Sync Message:

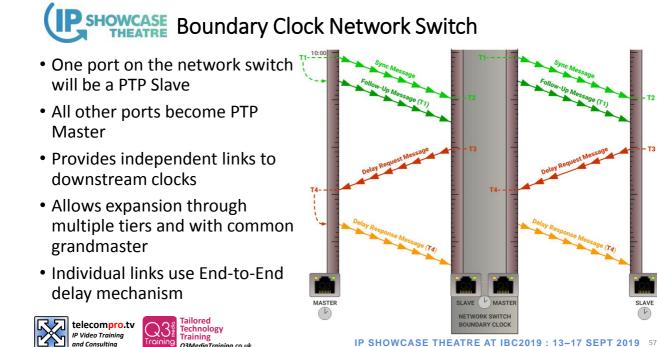

- "The time now is XX:XX" (sec:nanosec.)
- If slave immediately updated clock to be the time in the sync message (T1), it would still be offset equal to the time taken for the message to transit the link
- Actual time of egress sent in a follow-up message
- Delay Request & Response:
 - Measures time taken to transit network link
 - Assumes symmetrical delay

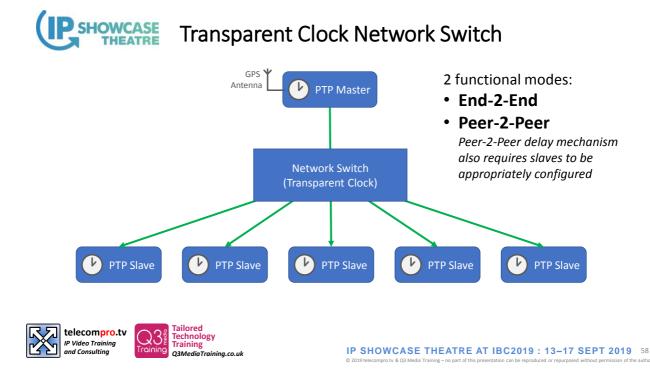


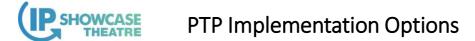







- Any network switch which is not 'PTP-Aware'
- Variable delay can be introduced as messages transit
- QoS can be used to improve performance
- The assumption of symmetry used in the End-2-End delay mechanism can result in clock jitter
- Passive switches can be used but their impact needs to be considered





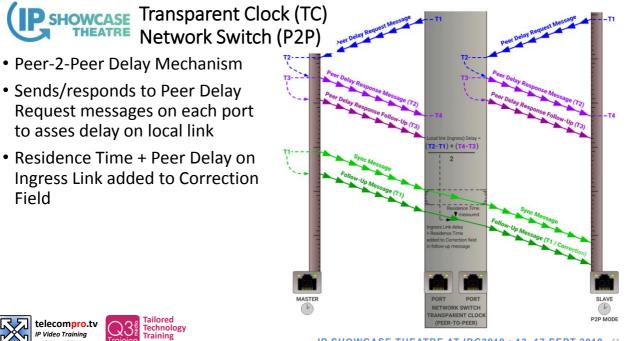
Delay Mechanism

End-to-End

- Slave measures the delay between itself and the master
- Messages: Delay_Req / Delay_Resp

Peer-to-Peer

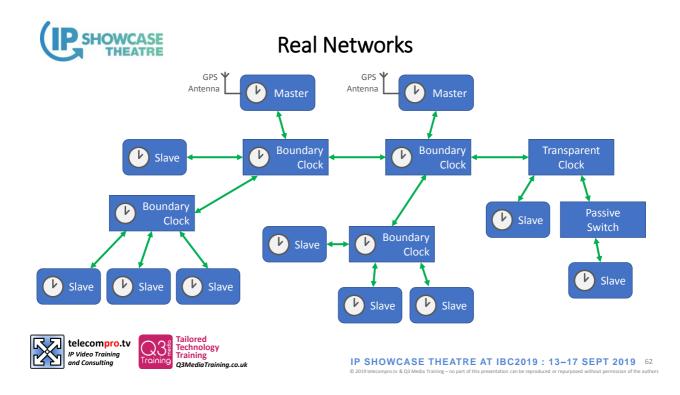
- Each network element measures the delay between its port and the device on the other end of the link
- Measured delays for each network element added to SYNC message as it transits between master and slave
- Messages: Pdelay_Req / Pdelay_Resp (+Follow-up for 2-step)



Transparent Clock (TC) **SHOWCASE** Network Switch (E2E) THEATRE PTP messages can be modified on the way through the switch 'Residence Time' (the time spent in the switch) is measured and added to the correction field in PTP message: - 1 Step: Sync / Delay Req - 2-Step: Follow up / Delay Resp Each TC adds its measured value to correction field value (i.e. tracks the cumulative delay) telecompro.tv Technology IP Video Training Training

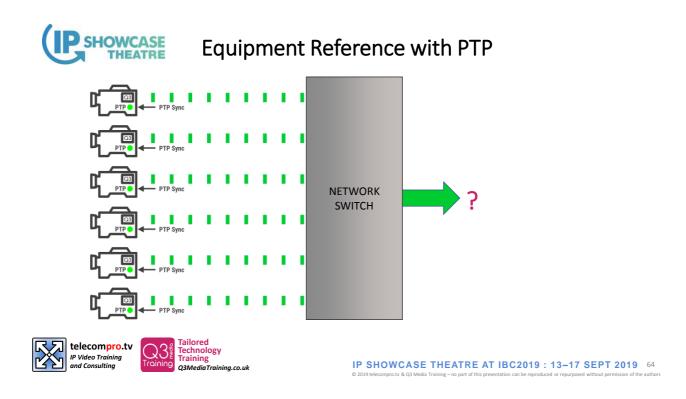
Copyright 2019 - No part of this presentation my be reproduced or repurposed without permission of the authors: telecompro.tv / Q3 Media Ltd.

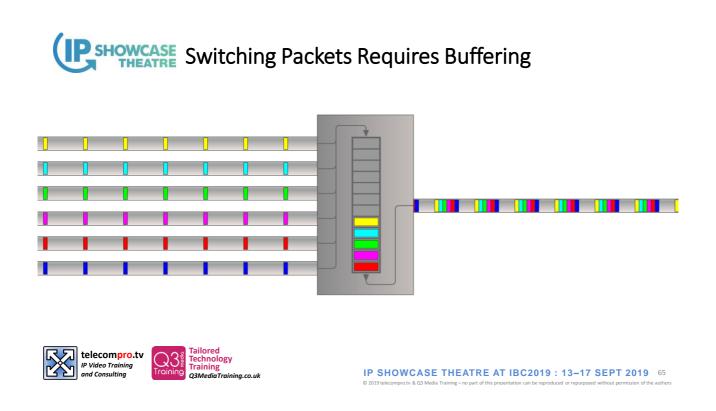
O3MediaTrainina co.uk

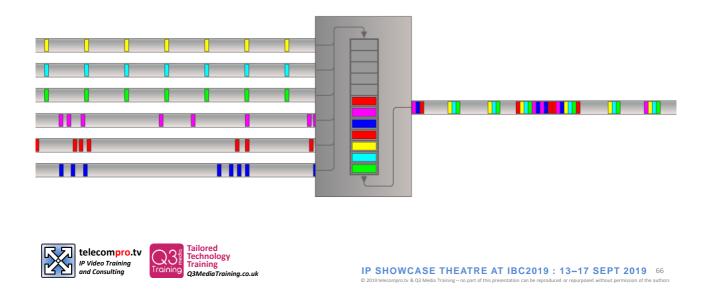

60

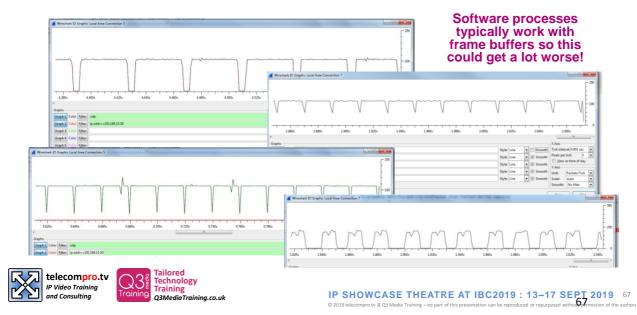

```
telecompro.tv
IP Video Training
and Consultina
                              Q3MediaTrai
```

Field


Electing a Grandmaster


- Best Master Clock Algorithm (BMCA) is used to elect a Grandmaster
- attributes are evaluated in the following order:
 - Priority 1 (lowest number wins)
 - Clock Class (GPS, free-run, etc)
 - Clock Accuracy (accuracy to UTC)
 - Clock Variance (jitter and wander)
 - Priority 2 (lowest number wins)
 - GMID (similar to mac address)
- These attributes are advertised in the PTP Announce Message (typically 1 4 per second depending on config)
- NB: all other equipment should be set to be PTP Slave only to prevent accidental election of inappropriate masters

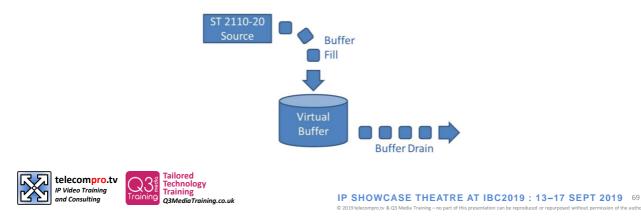



CREATERE Switching Packets Requires Buffering

SHOWCASE

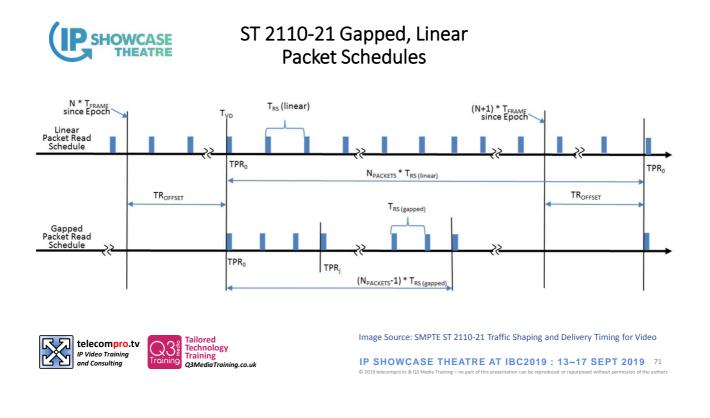
THEATRE

Wireshark captures showing some 2110-20 flows from different hardware devices


2110-21 Traffic Shaping

Networking Detail ST 2110-21 Timing Models

- Senders can't burst out all of their data at once
 Overloads receivers and network switch buffers
- Some variability is necessary
 - HANC/VANC gaps, software-based senders



Two Constraints for ST 2110-20 Senders

- Network Compatibility Model
 - Ensures streams will not overflow buffers inside network devices
 - Scaling factor β of 1.1 means buffers drain 10% faster than they fill
- Virtual Receiver Buffer Model
 - Buffer is modelled as input of every receiver device
 - Note: Must be included in end-to-end system delay
 - Packets read from buffer perfectly, based on video format
 - Buffer not allowed to overflow or underflow
- All senders must comply with both models

ST 2110-21 Sender Types

• Three Sender Types: N = Narrow, NL = Narrow Linear, W = Wide

Type N (Narrow)	 Model assumes TR_{OFFSET} of Small buffer means limited 	pture and processing ver buffer is about 9 packets in gapped mode of a couple of video lines from SMPTE Epoch ed delay passing through each device in systems ughly" in sync with pixels in SDI
Type NL (Narrow Linear)	 linear version of N no gaps corresponding to 	SDI VANC
Type W (Wide)	 Larger buffer can handle 	is 720 packets in some popular formats
IP Video Training	lored chnology iining MediaTraining.co.uk	IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 72 © 2019 telecomptor & 0.30 Media Training – no part of this presentation can be reproduced or repurposed without permission of the authors

ST 2110-21 Sender/Receiver Compatibility

Receiver Type	Type N Sender	Type NL Sender	Type W Sender
Type N Synchronous Narrow	Mandatory	Optional	No
Type W Synchronous Wide	Mandatory	Mandatory	Mandatory
Type A Asynchronous	Mandatory	Mandatory	Mandatory

- Synchronous Receivers must have clock locked to Sender
- Synchronous Narrow Receivers are only required to work with Senders that use the default TR_{OFFSET}


```
IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 73
```


Q3MediaTraining.co.uk

- Current Title: "Professional Media over Managed IP Networks:
- Constant Bit-Rate Compressed Video"
 - Supports CBR compression formats such as VC2
 - Must be a registered RTP media type as per RFC 4855
 - RTP Clock rate of 90 kHz
 - Must conform to either "NL" or "W" network compatibility model of ST 2110-21; virtual receiver buffer model does not apply


```
IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 75
© 2019 telecompro.tv & Q3 Media Training – no part of this presentation can be reproduced or repurposed without permission of the authors
```

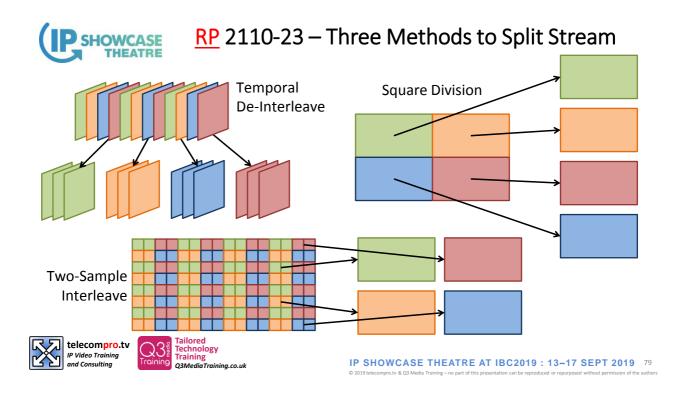

- Visually lossless compression cannot be seen by observer
 - Some data must always be removed
 - Done so as to be invisible to human viewer
 - Can have very low latency using slice-based compression
- Popular codecs available
 - VC-2 DIRAC from BBC RFC 8450
 - Also JPEG XS draft-lugan-payload-rtp-jpegxs-01
- 2:1 to 8:1 compression ratios
 - 3Gbit/s SDI compressed to 1.5 to 0.5 Gbit/s

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 76

Forthcoming: SMPTE ST 2110-22 SDP for ST 2110-22

- Format parameters (a=fmtp) statement must include
 - Image height in lines
 - Image width in pixels
 - TP of either 2110TPNL or 2110TPW
 - Optional value of CMAX if different from default
- Bit rate parameter "b=AS:<bandwidth>" must be included
 - Bandwidth is in kilobits/second calculated over one frame period
- SDP must include a frame rate statement, either
 - -a=framerate xx.yy (as a decimal number)
 - -exactframerate=M/N (as a ratio of two integers) in "fmtp"

Forthcoming: SMPTE <u>RP</u> 2110-23


Recommended Practice

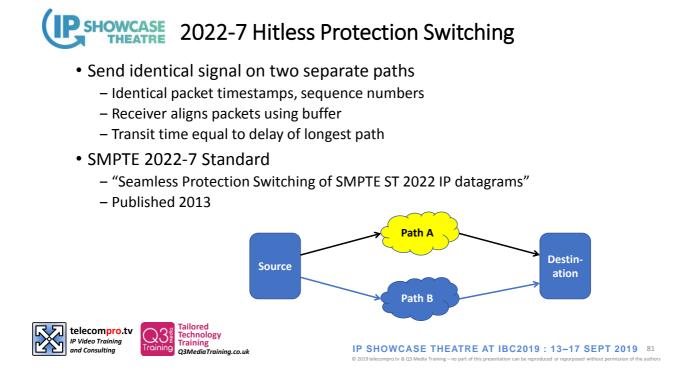
- Working Title: "Single Video Essence Transport over Multiple ST 2110-20 Streams"
- Idea is to have a system where multiple low-bandwidth streams can be used to transport one high-bandwidth signal
 - High resolution streams, such as UHD1/4K or UHD2/8K
 - High frame rate streams, such as those over 100 fps
 - Also known as "multiport"
- Each sub-stream is a valid ST 2110-20/2110-21 stream
 - Timestamps tied to original frames
 - Comply with timing models

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 78

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 77

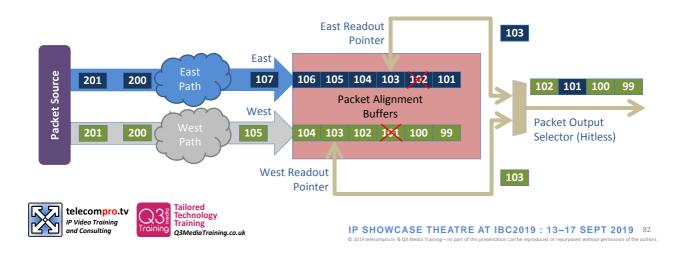
telecompro.tv

IP Video Training and Consulting


2022-7 Redundant Transport

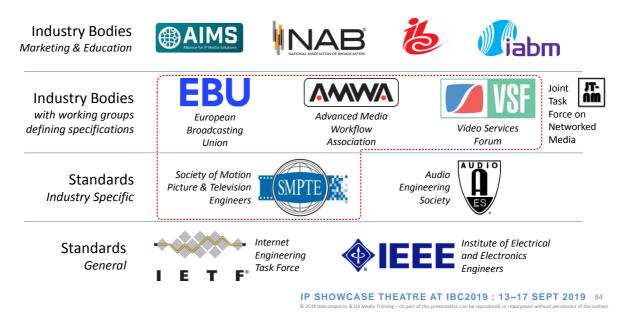
Copyright 2019 - No part of this presentation my be reproduced or repurposed without permission of the authors: telecompro.tv / Q3 Media Ltd.

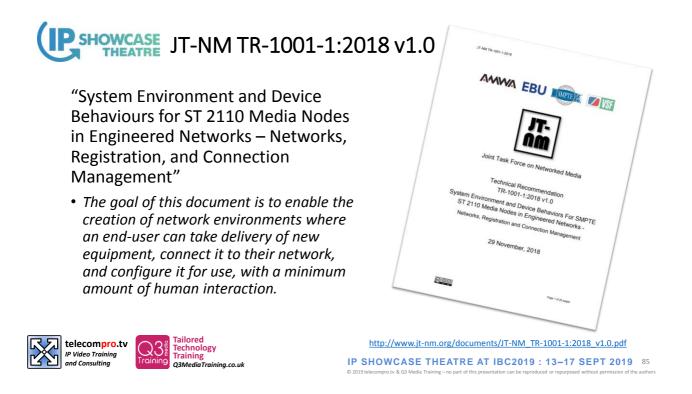
Technology Training

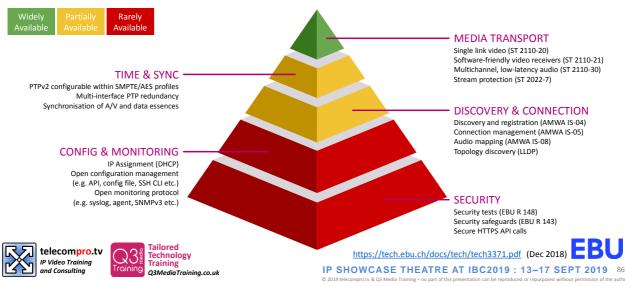

Q3MediaTraining.co.uk

Route Diversity using ST 2022-7

• Diverse routes with SMPTE ST 2022-7 Hitless Protection Switching


JT-NM TR-1001 / NMOS

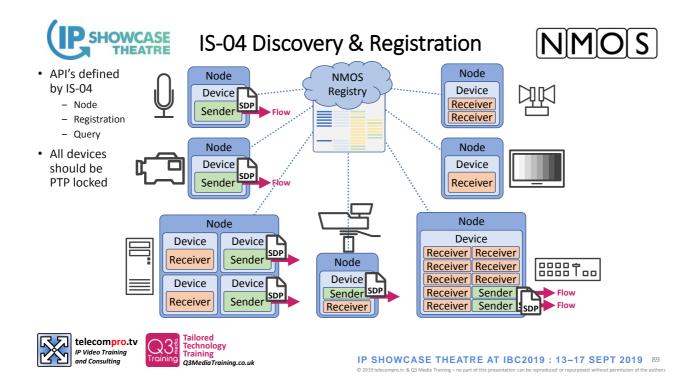


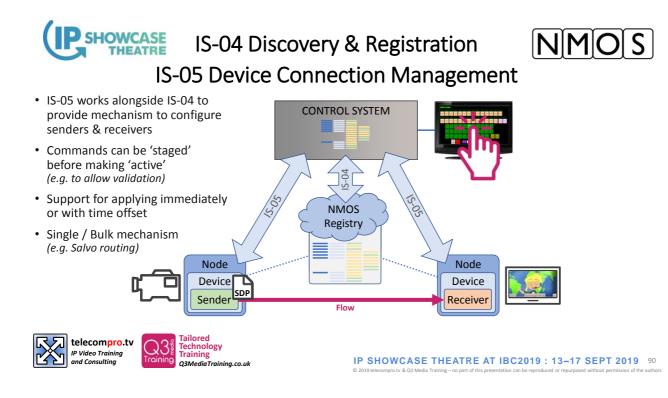

IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 83

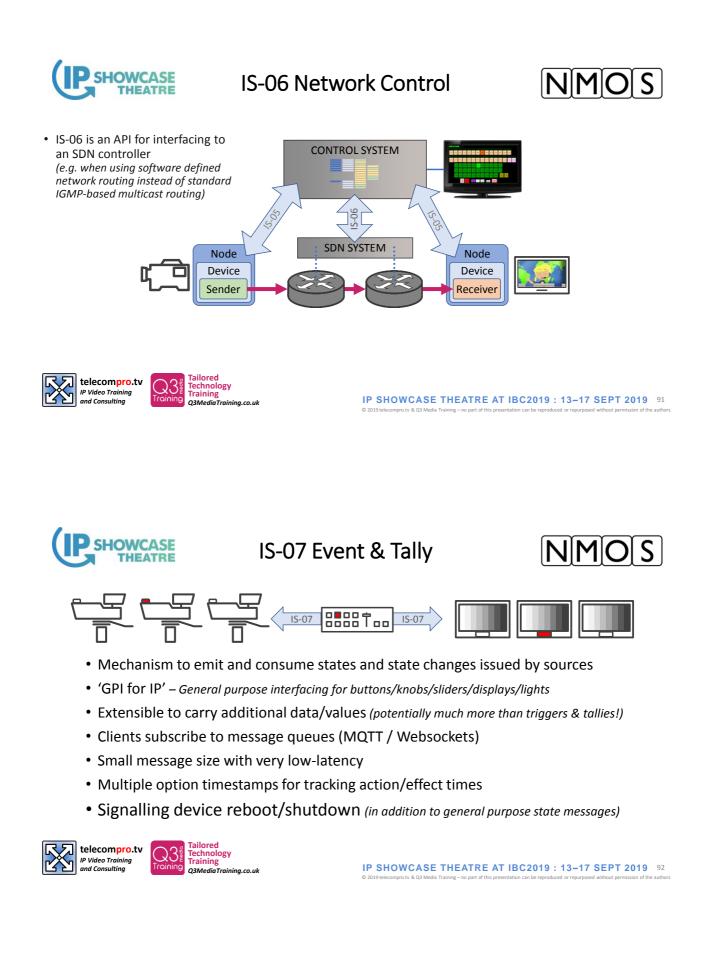
URSHOWCASE EBU: "The Technology Pyramid for Media Nodes"

The minimum stack of endpoint technologies to build an IP-based media facility

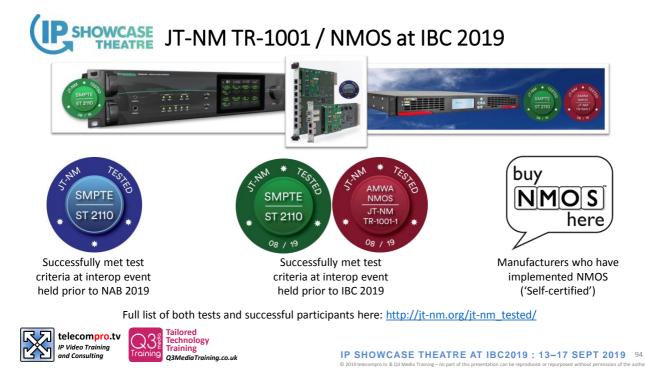
SHOWCASE THEATRE	NMOS		erited Media Open 1 X + amwa-tx.github.io/nmos/			-	
		NM	DS Network			ons from	
	networked media	HOME OV	ERVIEW GITHUB WIKI FA	AQs TOOLS IS-XX	MORE SE	ARCH	
			Network	ed Media Open S	Specifica	tions	
Advanced Media	open specifications	open specifications NMOS is a family name for specifications produced by the Advanced Media Workflow Association re networked media for professional applications.					
Workflow Association		Here you will find general information about these Specifications – start with the Technical Overview.					
	· · ·	The table below lists the current specifications and provides links to their repositories on github.com/MMW documentation on amwa-tx-github.co. The "Version" links will take you to the documentation and download for the latest release of recent versions of the specification.					
 A set of specifications 	/protocols created by	Id	Name	Spec Status	Version(s)	Repository	
•	dia Incubator working group	IS-04	Discovery & Registration	AMWA Specification (Stable)	v1.3↓ v1.2.2↓ v1.1.3↓	nmos-discovery-registration	
• Developed since 2015 alongside standardisatio		IS-05	Device Connection Management	AMWA Specification (Stable)	v1.1↓ v1.0.2↓	nmos-device-connection- management	
	alongside standardisation	IS-06	Network Control	AMWA Specification	v1.0 ↓	nmos-network-control	
of SMPTE ST-2110		IS-07	Event & Tally	AMWA Specification	v1.0.1 ↓	nmos-event-tally	
/hish sushad sut of	VCE's TD 02 formet	IS-08	Audio Channel Mapping	AMWA Specification	v1.0 ↓	nmos-audio-channel-mapping	
(which evolved out of	,	IS-09	System	Work In Progress		nmos-system	
		IS-10	Authorization	Work In Progress		nmos-authorization	
 Modelled around concepts outlined in JT-NM's 		MS-04	ID & Timing Model	Work In Progress		nmos-id-timing-model	
	•	BCP-002- 01	Natural Grouping	AMWA Specification		nmos-grouping	
Reference Architecture IBC 2015 (<u>http://jt-nm.org/</u>	e document published at	BCP-003- 01	API Security: Communications	AMWA Specification		nmos-api-security	
	<u>g/RA-1.0/</u>)	BCP-003- 02	API Security: Authorization	Work In Progress		nmos-api-security	
		n/a	Parameter Registers	Continuing		nmos-parameter-registers	
telecompro.tv IP Video Training and Consulting	ology Ng IP SHOV a Training.co.uk IP SHOV				: 13-1	7 SEPT 2019	


IS-04 Discovery & Registration




- Keeping track of all the flows, what is generating them, and what can consume them
- Protocols defined for both Peer-to-Peer discovery and discovery via central Registry
- mDNS discovery (within subnet)
- HTTP-based protocols for Node/Registration/Query API's (JSON payload)
- Flow properties/parameters via SDP file (RFC 4566)

IP SHOWCASE THEATRE AT IBC2019 : 13-17 SEPT 2019 88



Id	Name	Spec Status	Version(s)	Repository
IS-04	Discovery & Registration	AMWA Specification (Stable)	<u>v1.3</u> / <u>v1.2.2</u> / <u>v1.1.3</u>	nmos-discovery-registration
IS-05	Device Connection Management	AMWA Specification (Stable)	<u>v1.1 / v1.0.2</u>	nmos-device-connection-managemen
IS-06	Network Control	AMWA Specification	<u>v1.0</u>	nmos-network-control
IS-07	Event & Tally	AMWA Specification	<u>v1.0.1</u>	nmos-event-tally
IS-08	Audio Channel Mapping	AMWA Specification	<u>v1.0</u>	nmos-audio-channel-mapping
IS-09	System	Work In Progress		nmos-system
IS-10	Authorization	Work In Progress		nmos-authorization
MS-04	ID & Timing Model	Work In Progress		nmos-id-timing-model
BCP-002-01	Natural Grouping	AMWA Specification		nmos-grouping
BCP-003-01	API Security: Communications	AMWA Specification		nmos-api-security
BCP-003-02	API Security: Authorization	Work In Progress		nmos-api-security
n/a	Parameter Registers	Continuing		nmos-parameter-registers

IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 93 © 2019 telecompro.tv & 03 Media Training – no part of this presentation can be reproduced or repurposed without permission of the authors

Thank you

Wes Simpson

Telecom Product Consulting

wes.simpson@gmail.com

+1 203 376 3372

https://www.telecompro.tv

Ed Calverley

Q3 Media Training ed.calverley@q3media.co.uk +44 20 3475 0250

https://q3mediatraining.co.uk

Thank you to our Media Partners

BROADCAST THE _____ BRIDGE Connecting IT to Broadcast

Troining Troining AgMediaTraining.co.uk

IP SHOWCASE THEATRE AT IBC2019 : 13–17 SEPT 2019 95